Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 305
Filtrar
1.
Acta Pharm Sin B ; 14(4): 1787-1800, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572091

RESUMO

Radiotherapy (RT) is one of the most feasible and routinely used therapeutic modalities for treating malignant tumors. In particular, immune responses triggered by RT, known as radio-immunotherapy, can partially inhibit the growth of distantly spreading tumors and recurrent tumors. However, the safety and efficacy of radio-immunotherapy is impeded by the radio-resistance and poor immunogenicity of tumor. Herein, we report oxaliplatin (IV)-iron bimetallic nanoparticles (OXA/Fe NPs) as cascade sensitizing amplifiers for low-dose and robust radio-immunotherapy. The OXA/Fe NPs exhibit tumor-specific accumulation and activation of OXA (II) and Fe2+ in response to the reductive and acidic microenvironment within tumor cells. The cascade reactions of the released metallic drugs can sensitize RT by inducing DNA damage, increasing ROS and O2 levels, and amplifying the immunogenic cell death (ICD) effect after RT to facilitate potent immune activation. As a result, OXA/Fe NPs-based low-dose RT triggered a robust immune response and inhibited the distant and metastatic tumors effectively by a strong abscopal effect. Moreover, a long-term immunological memory effect to protect mice from tumor rechallenging is observed. Overall, the bimetallic NPs-based cascade sensitizing amplifier system offers an efficient radio-immunotherapy regimen that addresses the key challenges.

2.
Nano Lett ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619219

RESUMO

Current density imaging is helpful for discovering interesting electronic phenomena and understanding carrier dynamics, and by combining pressure distributions, several pressure-induced novel physics may be comprehended. In this work, noninvasive, high-resolution two-dimensional images of the current density and pressure gradient for graphene ribbon and hBN-graphene-hBN devices are explored using nitrogen-vacancy (NV) centers in diamond under high pressure. The two-dimensional vector current density is reconstructed by the vector magnetic field mapped by the near-surface NV center layer in the diamond. The current density images accurately and clearly reproduce the complicated structure and current flow of graphene under high pressure. Additionally, the spatial distribution of the pressure is simultaneously mapped, rationalizing the nonuniformity of the current density under high pressure. The current method opens a significant new avenue to investigate electronic transport and conductance variations in two-dimensional materials and electrical devices under high pressure as well as for nondestructive evaluation of semiconductor circuits.

3.
Nat Protoc ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491145

RESUMO

As different taxa evolve, gene order often changes slowly enough that chromosomal 'blocks' with conserved gene orders (synteny) are discernible. The MCScanX toolkit ( https://github.com/wyp1125/MCScanX ) was published in 2012 as freely available software for the detection of such 'colinear blocks' and subsequent synteny and evolutionary analyses based on genome-wide gene location and protein sequence information. Owing to its simplicity and high efficiency for colinear block detection, MCScanX provides a powerful tool for conducting diverse synteny and evolutionary analyses. Moreover, the detection of colinear blocks has been embraced as an integral step for pangenome graph construction. Here, new application trends of MCScanX are explored, striving to better connect this increasingly used tool to other tools and accelerate insight generation from exponentially growing sequence data. We provide a detailed protocol that covers how to install MCScanX on diverse platforms, tune parameters, prepare input files from data from the National Center for Biotechnology Information, run MCScanX and its visualization and evolutionary analysis tools, and connect MCScanX with external tools, including MCScanX-transposed, Circos and SynVisio. This protocol is easily implemented by users with minimal computational background and is adaptable to new data of interest to them. The data and utility programs for this protocol can be obtained from http://bdx-consulting.com/mcscanx-protocol .

4.
Phys Rev Lett ; 132(8): 086502, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38457738

RESUMO

A one-dimensional Bose-Hubbard model with unidirectional hopping is shown to be exactly solvable. Applying the algebraic Bethe ansatz method, we prove the integrability of the model and derive the Bethe ansatz equations. The exact eigenvalue spectrum can be obtained by solving these equations. The distribution of Bethe roots reveals the presence of a superfluid-Mott insulator transition at the ground state, and the critical point is determined. By adjusting the boundary parameter, we demonstrate the existence of a non-Hermitian skin effect even in the presence of interaction, but it is completely suppressed for the Mott insulator state in the thermodynamical limit. Our result represents a new class of exactly solvable non-Hermitian many-body systems, which has no Hermitian correspondence and can be used as a benchmark for various numerical techniques developed for non-Hermitian many-body systems.

5.
ChemSusChem ; : e202301787, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38440928

RESUMO

As a promising large-scale energy storage technology, all-vanadium redox flow battery has garnered considerable attention. However, the issue of capacity decay significantly hinders its further development, and thus the problem remains to be systematically sorted out and further explored. This review provides comprehensive insights into the multiple factors contributing to capacity decay, encompassing vanadium cross-over, self-discharge reactions, water molecules migration, gas evolution reactions, and vanadium precipitation. Subsequently, it analyzes the impact of various battery parameters on capacity. Based on this foundation, the article expounds upon the significance of battery internal state estimation technology. Additionally, the review also summarizes domestic and international mathematical models utilized for simulating capacity decay, serving as a valuable reference for future research endeavors. Finally, through the comparison of traditional experimental methods and mathematical modeling methods, this article offers effective guidance for the future development direction of battery state monitoring. This review generally overview the problems related to the capacity attenuation of all-vanadium flow batteries, which is of great significance for understanding the mechanism behind capacity decay and state monitoring technology of all-vanadium redox flow battery.

7.
Sci Rep ; 14(1): 3670, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38351185

RESUMO

Clamping bushing structure is an internode connection mechanism designed for the standard section of tubular truss tower. In this paper, the clamping bushing structure of the connecting mechanism of super-large tower crane is taken as the research object, a three-dimensional model of clamping bushing structure is established and imported into ABAQUS, and its multi-body contact model is further constructed to study the contact and bearing relationship of the structure under multiple working conditions, and the accuracy of the calculation results of the model is verified by the experimental stress test under tensile working conditions. In addition, this study is based on the control variable method, and through the design of orthogonal test table, the influence degree of five variable parameters of clamping bushing on the bearing capacity of the structure is investigated. Finally, through the range analysis, the optimal horizontal combination of variables and parameters of clamping bushing structure is obtained, and the optimal matching relationship between the shape of the tower connecting mechanism and the bearing capacity is obtained. The results show that, compared with the original model, the stress concentration at the most dangerous section of the optimized joint and the bushing is obviously alleviated, in which the stress peaks of the upper and lower joints are kept below 500 MPa, and the stress peaks of the bushing groove are also reduced to between 573 and 722 MPa. Moreover, the designed and optimized lower joint can reduce the maximum equivalent plastic strain of the joint root circumference by 56.05% under the original maximum tensile condition, and the overall distribution trend of equivalent plastic strain is more uniform, and a more reliable structural design is obtained, which plays an important guiding role in the design, optimization and analysis of the connecting mechanism of the tower body of large tower crane.

8.
Natl Sci Rev ; 11(3): nwae009, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38344115

RESUMO

Enhancing the thermoelectric transport properties of conductive polymer materials has been a long-term challenge, in spite of the success seen with molecular doping strategies. However, the strong coupling between the thermopower and the electrical conductivity limits thermoelectric performance. Here, we use polaron interfacial occupied entropy engineering to break through this intercoupling for a PEDOT:PSS (poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate)) thin film by using photochromic diarylethene (DAE) dopants coupled with UV-light modulation. With a 10-fold enhancement of the thermopower from 13.5 µV K-1 to 135.4 µV K-1 and almost unchanged electrical conductivity, the DAE-doped PEDOT:PSS thin film achieved an extremely high power factor of 521.28 µW m-1 K-2 from an original value of 6.78 µW m-1 K-2. The thermopower was positively correlated with the UV-light intensity but decreased with increasing temperature, indicating resonant coupling between the planar closed DAE molecule and PEDOT. Both the experiments and theoretical calculations consistently confirmed the formation of an interface state due to this resonant coupling. Interfacial entropy engineering of polarons could play a critical role in enhancing the thermoelectric performance of the organic film.

9.
Nat Commun ; 15(1): 1172, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332129

RESUMO

Ionic thermoelectric (i-TE) liquid cells offer an environmentally friendly, cost effective, and easy-operation route to low-grade heat recovery. However, the lowest temperature is limited by the freezing temperature of the aqueous electrolyte. Applying a eutectic solvent strategy, we fabricate a high-performance cryo-temperature i-TE liquid cell. Formamide is used as a chaotic organic solvent that destroys the hydrogen bond network between water molecules, forming a deep eutectic solvent that enables the cell to operate near cryo temperatures (down to -35 °C). After synergistic optimization of the electrode and cell structure, the as-fabricated liquid i-TE cell with cold (-35 °C) and hot (70 °C) ends achieve a high power density (17.5 W m-2) and a large two-hour energy density (27 kJ m-2). In a prototype 25-cell module, the open-circuit voltage and short-circuit current are 6.9 V and 68 mA, respectively, and the maximum power is 131 mW. The anti-freezing ability and high output performance of the as-fabricated i-TE liquid cell system are requisites for applications in frigid regions.

10.
Int Wound J ; 21(3): e14741, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38414304

RESUMO

At present, it is still controversial whether patients in intensive care unit (ICU) use tracheal intubation with or without cuff. This paper evaluates the effect of tracheal intubation with and without cuff on overall complication rate of patients with intubation in ICU. The database of PubMed, Embase, Conchrane Library and Web of Science was searched by computer, and the clinical research on intubation with and without cuff in ICU was collected. The time range was from the database establishment to November 2023. Literature was independently screened, information was extracted, and quality was assessed by two researchers. Finally, there were nine studies included, with 11 068 patients (7391 in cuff group and 3677 in non-cuff group). The results showed that the overall complication rate of cuff group was significantly lower than that of non-cuff group, and that of cuff group (RR = 0.53, p < 0.01). In addition, compared with the non-cuff group, the cuff group had a lower number of tracheal intubation changes [RR = 0.05, p < 0.01] and a lower incidence of aspiration pneumonia (RR = 0.45, p = 0.01). Compared with the non-cuff group, the cuff group had a higher incidence of oral mucosal ulcers and pharyngitis (RR = 1.99, p = 0.04), while the cuff group had a lower incidence of laryngeal edema (RR = 0.39, p < 0.01). In ICU intubation patients, the use of cuffs reduces overall complication rate in comparison to patients without cuffs. Therefore, patients with intubation in ICU can recommend tracheal intubation with cuff.


Assuntos
Cuidados Críticos , Intubação Intratraqueal , Humanos , Incidência , Intubação Intratraqueal/efeitos adversos , Unidades de Terapia Intensiva
11.
Aging (Albany NY) ; 16(3): 2887-2907, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38345559

RESUMO

Lung adenocarcinoma (LUAD) is a malignant tumor of the respiratory system that has a poor 5-year survival rate. Anoikis, a type of programmed cell death, contributes to tumor development and metastasis. The aim of this study was to develop an anoikis-based stratified model, and a multivariable-based nomogram for guiding clinical therapy for LUAD. Through differentially expressed analysis, univariate Cox, LASSO Cox regression, and random forest algorithm analysis, we established a 4 anoikis-related genes-based stratified model, and a multivariable-based nomogram, which could accurately predict the prognosis of LUAD patients in the TCGA and GEO databases, respectively. The low and high-risk score LUAD patients stratified by the model showed different tumor mutation burden, tumor microenvironment, gemcitabine sensitivity and immune checkpoint expressions. Through immunohistochemical analysis of clinical LUAD samples, we found that the 4 anoikis-related genes (PLK1, SLC2A1, ANGPTL4, CDKN3) were highly expressed in the tumor samples from clinical LUAD patients, and knockdown of these genes in LUAD cells by transfection with small interfering RNAs significantly inhibited LUAD cell proliferation and migration, and promoted anoikis. In conclusion, we developed an anoikis-based stratified model and a multivariable-based nomogram of LUAD, which could predict the survival of LUAD patients and guide clinical treatment.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Anoikis/genética , Adenocarcinoma de Pulmão/genética , Biomarcadores , Biologia Computacional , Neoplasias Pulmonares/genética , Prognóstico , Microambiente Tumoral/genética
12.
BMC Biol ; 22(1): 50, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414012

RESUMO

BACKGROUND: The formation and domestication of ornamental traits are influenced by various aspects, such as the recognition of esthetic values and cultural traditions. Camellia japonica is widely appreciated and domesticated around the world mainly due to its rich variations in ornamental traits. Ornamental camellias have a diverse range of resources, including different bud variations from Camellia spp. as well as inter- and intra- specific hybridization. Despite research on the formation of ornamental traits, a basic understanding of their genetics and genomics is still lacking. RESULTS: Here, we report the chromosomal-level reference genome of C. japonica through combining multiple DNA-sequencing technologies and obtain a high-density genetic linkage map of 4255 markers by sequencing 98 interspecific F1 hybrids between C. japonica and C. chekiangoleosa. We identify two whole-genome duplication events in C. japonica: one is a shared ancient γ event, and the other is revealed to be specific to genus Camellia. Based on the micro-collinearity analysis, we find large-scale segmental duplication of chromosome 8, resulting to two copies of the AGAMOUS loci, which may play a key role in the domestication of floral shapes. To explore the regulatory mechanisms of seasonal flowering, we have analyzed year-round gene expression patterns of C. japonica and C. azalea-a sister plant of continuous flowering that has been widely used for cross breeding. Through comparative analyses of gene co-expression networks and annual gene expression patterns, we show that annual expression rhythms of some important regulators of seasonal growth and development, including GIGANTEA and CONSTANS of the photoperiod pathway, have been disrupted in C. azalea. Furthermore, we reveal that the distinctive expression patterns of FLOWERING LOCUS T can be correlated with the seasonal activities of flowering and flushing. We demonstrate that the regulatory module involved in GIGANTEA, CONSTANS, and FLOWERING LOCUS T is central to achieve seasonality. CONCLUSIONS: Through the genomic and comparative genomics characterizations of ornamental Camellia spp., we propose that duplication of chromosomal segments as well as the establishment of gene expression patterns has played a key role in the formation of ornamental traits (e.g., flower shape, flowering time). This work provides a valuable genomic platform for understanding the molecular basis of ornamental traits.


Assuntos
Camellia , Estações do Ano , Camellia/genética , Melhoramento Vegetal , Genômica , Flores/genética , Expressão Gênica , Regulação da Expressão Gênica de Plantas
13.
Adv Sci (Weinh) ; 11(13): e2307798, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38279574

RESUMO

Developing nanozymes with effective reactive oxygen species (ROS) scavenging ability is a promising approach for osteoarthritis (OA) treatment. Nonetheless, numerous nanozymes lie in their relatively low antioxidant activity. In certain circumstances, some of these nanozymes may even instigate ROS production to cause side effects. To address these challenges, a copper-based metal-organic framework (Cu MOF) nanozyme is designed and applied for OA treatment. Cu MOF exhibits comprehensive and powerful activities (i.e., SOD-like, CAT-like, and •OH scavenging activities) while negligible pro-oxidant activities (POD- and OXD-like activities). Collectively, Cu MOF nanozyme is more effective at scavenging various types of ROS than other Cu-based antioxidants, such as commercial CuO and Cu single-atom nanozyme. Density functional theory calculations also confirm the origin of its outstanding enzyme-like activities. In vitro and in vivo results demonstrate that Cu MOF nanozyme exhibits an excellent ability to decrease intracellular ROS levels and relieve hypoxic microenvironment of synovial macrophages. As a result, Cu MOF nanozyme can modulate the polarization of macrophages from pro-inflammatory M1 to anti-inflammatory M2 subtype, and inhibit the degradation of cartilage matrix for efficient OA treatment. The excellent biocompatibility and protective properties of Cu MOF nanozyme make it a valuable asset in treating ROS-related ailments beyond OA.


Assuntos
Estruturas Metalorgânicas , Osteoartrite , Humanos , Antioxidantes/farmacologia , Cobre , Espécies Reativas de Oxigênio , Osteoartrite/tratamento farmacológico
14.
Int J Womens Health ; 16: 31-39, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38222312

RESUMO

Introduction: Tumor-infiltrating lymphocytes (TILs) therapy is one of the most promising adoptive T cell therapies, which has shown great clinical efficacy against several solid malignancies. Nevertheless, clinical response to TILs mono-therapy in Asian patients with recurrent cervical cancer has not been well reported. Case Presentation: Here, we report two patients who were diagnosed with metastatic cervical cancer and tumor progression following multiple conventional treatments. In particular, one of the patients has a history of severe myelosuppression after chemotherapy. The patients received lymphodepletion therapy, which consisted of cyclophosphamide (30mg/kg) for 2 days, followed by Fludarabine (25mg/m2) for 5 days, approximately 24 hr before receiving intravenous autologous TILs infusion. These two patients then received high doses of IL-2 for 10 days with the purpose of maintaining T cell survival and proliferation. Patient 1 experienced clinical partial response (PR) at 6 weeks post TILs infusion and a 33% tumor shrinkage at 12 weeks follow-up, and patient 2 was evaluated as stable disease (SD) at 6 weeks post treatment. Mild and manageable adverse events were observed and soon subsided after the TILs treatment. A time-course study examining the peripheral blood cell count and cytokine secretion demonstrated the persistence of infused TILs and long-term immune response. Conclusion: These results suggest that TILs mono-therapy can be a promising treatment strategy for Asian patients with late-stage metastatic cervical cancer even with severe myelosuppression. TILs infusion can induce persistence and a long-term systematic immune response that reversed peripheral CD4+T and CD8+T percentages implying that TILs infusion increased cytotic T cell responses, which is consistent with clinical responses in these patients. Trial registration number: NCT05366478.

15.
Inflammation ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206514

RESUMO

Xanthine oxidoreductase (XOR) serves as the primary source of hydrogen peroxide and superoxide anions in the intestinal mucosa. However, its specific contribution to the progression of colonic disease remains unclear. In this study, we investigated the role of XOR in ulcerative colitis (UC) and attempted to identify the underlying mechanisms. We used the dextran sulfate sodium (DSS)-induced mouse model to mimic UC and observed that XOR inhibitors, allopurinol and diphenyleneiodonium sulfate (DPI), significantly alleviated UC in mice. In addition, treatment with cobalt chloride (CoCl2) and 1% O2 increased the expression of XOR and induced DNA oxidative damage in colonic epithelial cells. Furthermore, we identified that XOR accumulation in the nucleus may directly cause DNA oxidative damage and regulates HIF1α protein levels. In addition, allopurinol effectively protected colon epithelial cells from CoCl2-induced DNA damage. Altogether, our data provided evidence that XOR could induce DNA damage under hypoxic conditions, indicating a significant role of XOR in the initiation and early development of colitis-associated colorectal cancer (CAC).

16.
Hepatol Int ; 18(1): 254-264, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37980313

RESUMO

BACKGROUND: Minimal residual disease (MRD) is proposed to be responsible for tumor recurrence. The role of circulating tumor DNA (ctDNA) to detect MRD, monitor recurrence, and predict prognosis in liver cancer patients undergoing liver transplantation (LT) remains unrevealed. METHODS: Serial blood samples were collected to profile ctDNA mutational changes. Baseline ctDNA mutational profiles were compared with those of matched tumor tissues. Correlations between ctDNA status and recurrence rate (RR) and recurrence-free survival (RFS) were analyzed, respectively. Dynamic change of ctDNA was monitored to predict tumor recurrence. RESULTS: Baseline mutational profiles of ctDNA were highly concordant with those of tumor tissues (median, 89.85%; range 46.2-100%) in the 74 patients. Before LT, positive ctDNA status was associated with higher RR (31.7% vs 11.5%; p = 0.001) and shorter RFS than negative ctDNA status (17.8 vs 19.4 months; p = 0.019). After LT, the percentage of ctDNA positivity decreased (17.6% vs 47.0%; p < 0.001) and patients with positive ctDNA status had higher RR (46.2% vs 21.3%; p < 0.001) and shorter RFS (17.2 vs 19.2 months; p = 0.010). Serial ctDNA profiling demonstrated patients with decreased or constant negative ctDNA status had lower RR (33.3% vs 50.0%; p = 0.015) and favorable RFS (18.2 vs 15.0 months, p = 0.003) than those with increased or constant positive ctDNA status. Serial ctDNA profiling predicted recurrence months ahead of imaging evidence and serum tumor biomarkers. CONCLUSIONS: ctDNA could effectively detect MRD and predict tumor recurrence in liver cancer patients undergone LT.


Assuntos
DNA Tumoral Circulante , Neoplasias Hepáticas , Transplante de Fígado , Humanos , DNA Tumoral Circulante/genética , Recidiva Local de Neoplasia/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/cirurgia , Biomarcadores Tumorais/genética
17.
J Gastroenterol Hepatol ; 39(2): 231-244, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37990622

RESUMO

Nowadays, hepatocellular carcinoma (HCC) is still a major threat to human health globally, with a disappointing prognosis. Regular monitoring of patients at high risk, utilizing abdominal ultrasonography combined with alpha-fetoprotein (AFP) serum analysis, enables the early detection of potentially treatable tumors. However, the approach has limitations due to its lack of sensitivity. Meanwhile, the current standard procedure for obtaining a tumor biopsy in cases of HCC is invasive and lacks the ability to assess the dynamic progression of cancer or account for tumor heterogeneity. Hence, there is a pressing need to develop non-invasive, highly sensitive biomarkers for HCC which can improve the accuracy of early diagnosis, assess treatment response and accurately predict the prognosis. In contrast to the conventional method of tissue biopsy, liquid biopsy offers a non-invasive approach that can be readily repeated. As a liquid biopsy approach, the analysis of cell-free DNA (cfDNA) offers real-time insights that can accurately portray the tumor burden and provide a comprehensive depiction of the genetic profile associated with HCC. In this review, we present a comprehensive summary of the recent research findings pertaining to the significance and potential practicality of cfDNA analysis in the early detection and effective management of HCC.


Assuntos
Carcinoma Hepatocelular , Ácidos Nucleicos Livres , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Ácidos Nucleicos Livres/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Biomarcadores Tumorais/genética , Detecção Precoce de Câncer/métodos
18.
Plant Physiol Biochem ; 206: 108205, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38035467

RESUMO

Cultivating high nitrogen use efficient varieties is a sustainable solution to mitigating adverse effects on the environment caused by excessive nitrogen fertilizer application. However, in sesame, although immoderate nitrogen fertilizers are used to promote yield, the molecular basis of high nitrogen use efficiency (NUE) is largely unknown. Hence, this study aimed to identify high NUE black sesame variety and dissect the underlying physiological and molecular mechanisms. To achieve this, seventeen seedling traits of 30 black sesame varieties were evaluated under low nitrogen (LN) and high nitrogen (HN) conditions. Dry matter accumulation, root parameters, shoot nitrogen accumulation, and chlorophyll content are important factors for evaluating the NUE of sesame genotypes. The variety 17-156 was identified as the most efficient for N utilization. Comparative physiological and transcriptomics analyses revealed that 17-156 possesses a sophisticated nitrogen metabolizing machinery to uptake and assimilate higher quantities of inorganic nitrogen into amino acids and proteins, and simultaneously improving carbon metabolism and growth. Specifically, the total nitrogen and soluble protein contents significantly increased with the increase in nitrogen concentrations. Many important genes, including nitrate transporters (NPFs), amino acid metabolism-related (GS, GOGAT, GDH, etc.), phytohormone-related, and transcription factors, were significantly up-regulated in 17-156 under HN condition. In addition, 38 potential candidate genes were identified for future studies toward improving sesame's NUE. These findings offer valuable resources for deciphering the regulatory network of nitrogen metabolism and developing sesame cultivars with improved NUE.


Assuntos
Nitrogênio , Sesamum , Nitrogênio/metabolismo , Sesamum/genética , Sesamum/metabolismo , Perfilação da Expressão Gênica , Genótipo , Fenótipo
19.
Macromol Biosci ; 24(2): e2300116, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37677756

RESUMO

The effectiveness of chemotherapy is primarily hindered by drug resistance, and autophagy plays a crucial role in overcoming this resistance. In this project, a human transferrin nanomedicine contains quercetin (a drug to induce excessive autophagy) and doxorubicin is developed (HTf@DOX/Qu NPs). The purpose of this nanomedicine is to enhance mitophagy and combating drug-resistant cancer. Through in vitro studies, it is demonstrated that HTf@DOX/Qu NPs can effectively downregulate cyclooxygenase-2 (COX-2), leading to an excessive promotion of mitophagy and subsequent mitochondrial dysfunction via the PENT-induced putative kinase 1 (PINK1)/Parkin axis. Additionally, HTf@DOX/Qu NPs can upregulate proapoptotic proteins to induce cellular apoptosis, thereby effectively reversing drug resistance. Furthermore, in vivo results have shown that HTf@DOX/Qu NPs exhibit prolonged circulation in the bloodstream, enhanced drug accumulation in tumors, and superior therapeutic efficacy compared to individual chemotherapy in a drug-resistant tumor model. This study presents a promising strategy for combating multidrug-resistant cancers by exacerbating mitophagy through the use of transferrin nanoparticles.


Assuntos
Nanopartículas , Neoplasias , Humanos , Nanomedicina/métodos , Mitofagia , Transferrina , Doxorrubicina/farmacologia
20.
Inflammation ; 47(1): 145-158, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37725272

RESUMO

Pyroptosis is closely involved in the pathopoiesis of cerebral ischemia and reperfusion (I/R) injury which seriously dangers human's life. Studies report that tangeretin (TANG), which is enriched in the peel of Citrus reticulata, has neuroprotective effects. Here, we explored whether absent in melanoma 2 (AIM2) inflammasome-mediated pyroptosis is involved in the cerebral I/R injury and the protective mechanism of TANG against cerebral I/R injury. In this study, we found that TANG treatment effectively alleviated I/R-induced brain injury and inhibited neuronal pyroptosis in an in vivo mice model with middle cerebral artery occlusion/reperfusion (MCAO/R) injury and in an in vitro hippocampal HT22 cell model with oxygen-glucose deprivation and reoxygenation (OGD/R) injury. Furthermore, we found TANG inhibited cerebral I/R-induced neuronal AIM2 inflammasome activation in vivo and in vitro via regulating nuclear factor E2-related factor 2 (NRF2). Moreover, administration of ML385, a chemical inhibitor of NRF2, notably blocked the neuroprotective effects of TANG against cerebral I/R injury. In conclusion, TANG attenuates cerebral I/R-induced neuronal pyroptosis by inhibiting AIM2 inflammasome activation via regulating NRF2. These findings indicate TANG is a potential therapeutic agent for cerebral I/R injury.


Assuntos
Isquemia Encefálica , Flavonas , Melanoma , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Camundongos , Humanos , Animais , Piroptose , Inflamassomos/farmacologia , Fator 2 Relacionado a NF-E2 , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Infarto da Artéria Cerebral Média/tratamento farmacológico , Reperfusão , Proteínas de Ligação a DNA/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...